70 research outputs found

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg^2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg^2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg^2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in 2008 August, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Lyα forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the southern Galactic cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameter pipeline, which has better determination of metallicity for high-metallicity stars

    The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg^2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg^2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg^2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

    The V1647 Orionis (IRAS 05436–0007) Protostar and Its Environment

    Get PDF
    We present Sloan Digital Sky Survey and United States Naval Observatory observations of the V1647 Ori protostar and surrounding field near NGC 2068. V1647 Ori, the likely driving source for HH 23, brightened significantly in November 2003. Analysis of SDSS imaging acquired in November 1998 and February 2002 during the quiescent state, recent USNO photometry, and published 2MASS and Gemini data shows that the color changes associated with brightening suggest an EXor outburst rather than a simple dust clearing event

    Dust properties inside molecular clouds from coreshine modeling and observations

    Get PDF
    Context. Using observations to deduce dust properties, grain size distribution, and physical conditions in molecular clouds is a highly degenerate problem. Aims. The coreshine phenomenon, a scattering process at 3.6 and 4.5 μ\mum that dominates absorption, has revealed its ability to explore the densest parts of clouds. We want to use this effect to constrain the dust parameters. The goal is to investigate to what extent grain growth (at constant dust mass) inside molecular clouds is able to explain the coreshine observations. We aim to find dust models that can explain a sample of Spitzer coreshine data. We also look at the consistency with near-infrared data we obtained for a few clouds. Methods. We selected four regions with a very high occurrence of coreshine cases: Taurus-Perseus, Cepheus, Chameleon and L183/L134. We built a grid of dust models and investigated the key parameters to reproduce the general trend of surface bright- nesses and intensity ratios of both coreshine and near-infrared observations with the help of a 3D Monte-Carlo radiative transfer code. The grid parameters allow to investigate the effect of coagulation upon spherical grains up to 5 μ\mum in size derived from the DustEm diffuse interstellar medium grains. Fluffiness (porosity or fractal degree), ices, and a handful of classical grain size distributions were also tested. We used the near- and mostly mid-infrared intensity ratios as strong discriminants between dust models. Results. The determination of the background field intensity at each wavelength is a key issue. In particular, an especially strong background field explains why we do not see coreshine in the Galactic plane at 3.6 and 4.5 μ\mum. For starless cores, where detected, the observed 4.5 μ\mum / 3.6 μ\mum coreshine intensity ratio is always lower than \sim0.5 which is also what we find in the models for the Taurus-Perseus and L183 directions. Embedded sources can lead to higher fluxes (up to four times greater than the strongest starless core fluxes) and higher coreshine ratios (from 0.5 to 1.1 in our selected sample). Normal interstellar radiation field conditions are sufficient to find suitable grain models at all wavelengths for starless cores. The standard interstellar grains are not able to reproduce observations and, due to the multi-wavelength approach, only a few grain types meet the criteria set by the data. Porosity does not affect the flux ratios while the fractal dimension helps to explain coreshine ratios but does not seem able to reproduce near-infrared observations without a mix of other grain types. Conclusions. Combined near- and mid-infrared wavelengths confirm the potential to reveal the nature and size distribution of dust grains. Careful assessment of the environmental parameters (interstellar and background fields, embedded or nearby reddened sources) is required to validate this new diagnostic

    Photometric Accretion Signatures Near the Substellar Boundary

    Full text link
    Multi-epoch imaging of the Orion equatorial region by the Sloan Digital Sky Survey has revealed that significant variability in the blue continuum persists into the late-M spectral types, indicating that magnetospheric accretion processes occur below the substellar boundary in the Orion OB1 association. We investigate the strength of the accretion-related continuum veiling by comparing the reddening-invariant colors of the most highly variable stars against those of main sequence M dwarfs and evolutionary models. A gradual decrease in the g band veiling is seen for the cooler and less massive members, as expected for a declining accretion rate with decreasing mass. We also see evidence that the temperature of the accretion shock decreases in the very low mass regime, reflecting a reduction in the energy flux carried by the accretion columns. We find that the near-IR excess attributed to circumstellar disk thermal emission drops rapidly for spectral types later than M4. This is likely due to the decrease in color contrast between the disk and the cooler stellar photosphere. Since accretion, which requires a substantial stellar magnetic field and the presence of a circumstellar disk, is inferred for masses down to 0.05 Msol we surmise that brown dwarfs and low mass stars share a common mode of formation.Comment: 37 pages, 14 figures, accepted by A

    Spectroscopic Properties of Cool Stars in the SDSS: An Analysis of Magnetic Activity and a Search for Subdwarfs

    Full text link
    We present a spectroscopic analysis of nearly 8000 late-type dwarfs in the Sloan Digital Sky Survey. Using the Halpha emission line as an activity indicator, we investigate the fraction of active stars as a function of spectral type and find a peak near type M8, confirming previous results. In contrast to past findings, we find that not all M7-M8 stars are active. We show that this may be a selection effect of the distance distributions of previous samples, as the active stars appear to be concentrated near the Galactic Plane. We also examine the activity strength (ratio of the luminosity emitted in Halpha to the bolometric luminosity) for each star, and find that the mean activity strength is constant over the range M0-M5 and declines at later types. The decline begins at a slightly earlier spectral type than previously found. We explore the effect that activity has on the broadband photometric colors and find no significant differences between active and inactive stars. We also carry out a search for subdwarfs using spectroscopic metallicity indicators, and find 60 subdwarf candidates. Several of these candidates are near the extreme subdwarf boundary. The spectroscopic subdwarf candidates are redder by \~0.2 magnitudes in g-r compared to disk dwarfs at the same r-i color.Comment: 17 pages, 9 figures, accepted for publication in A
    corecore